This is because longer runs will be outcompeted by runs that start later and therefore use better hardware and better algorithms.
Wouldn’t companies port their partially-trained models to new hardware? I guess the assumption here is that when more compute is available, actors will want to train larger models. I don’t think this is obviously true because:
1. Data may be the bigger bottleneck. There was some discussion of this here. Making models larger doesn’t help very much after a certain point compared with training them with more data.
2. If training runs are happening over months, there will be strong incentives to make use of previously trained models—especially in a world where people are racing to build AGI. This could look like anything from slapping on more layers to developing algorithms that expand the model in all relevant dimensions as it is being trained. Here’s a paper about progressive learning for vision transformers. I didn’t find anything for NLP, but I also haven’t looked very hard.
Your emphasis on how ‘fun’ your organization is is kind of off-putting (I noticed this on your website as well). I think it gives me the impression that you are not very serious about what you are doing. Maybe it’s just me though.