The analogy between AI safety and math or physics is assumed it in a lot of your writing and I think it is a source of major disagreement with other thinkers. ML capabilities clearly isn’t the kind of field that requires building representations over the course of decades.
I think it’s possible that AI safety requires more conceptual depth than AI capabilities; but in these worlds, I struggle to see how the current ML paradigm coincides with conceptual ‘solutions’ that can’t be found via iteration at the end. In those worlds, we are probably doomed so I’m betting on the worlds in which you are wrong and we must operate within the current empirical ML paradigm. It’s odd to me that you and Eliezer seem to think the current situation is very intractable, and yet you are confident enough in your beliefs to where you won’t operate on the assumption that you are wrong about something in order to bet on a more tractable world.
I agree with this norm, though I think it would be better to say that the “burden of evidence” should be on labs. When I first read the title, I thought you wanted labs to somehow prove the safety of their system in a conclusive way. What this probably looks like in practice is “we put x resources into red teaming and didn’t find any problems.” I would be surprised if ‘proof’ was ever an appropriate term.