I should probably reread the paper.

That being said:

No, it doesn’t, any more than “Godel’s theorem” or “Turing’s proof” proves simulations are impossible or “problems are NP-hard and so AGI is impossible”.

I don’t follow your logic here, which probably means I’m missing something. I agree that your latter cases are invalid logic. I *don’t* see why that’s relevant.

simulators can simply approximate

This does not evade this argument. If nested simulations successively approximate, total computation decreases exponentially (or the Margolus–Levitin theorem doesn’t apply everywhere).

simulate smaller sections

This does not evade this argument. If nested simulations successively simulate smaller sections, total computation decreases exponentially (or the Margolus–Levitin theorem doesn’t apply everywhere).

tamper with observers inside the simulation

This does not evade this argument. If nested simulations successively tamper with observers, this does not affect total computation—total computation still decreases exponentially (or the Margolus–Levitin theorem doesn’t apply everywhere).

slow down the simulation

This does not evade this argument. If nested simulations successively slow down, total computation^{[1]} decreases exponentially (or the Margolus–Levitin theorem doesn’t apply everywhere).

cache results like HashLife

This does not evade this argument. Using HashLife, total computation still decreases exponentially (or the Margolus–Levitin theorem doesn’t apply everywhere).

(How do we simulate

anythingalready...?)

By accepting a multiplicative slowdown per level of simulation in the infinite limit^{[2]}, and not infinitely nesting.

- ^
See note 2 in the parent: “Note: I’m using ‘amount of computation’ as shorthand for ‘operations / second / Joule’. This is a little bit different than normal, but meh.”

- ^
You absolutely can, in certain cases, get no slowdown or even a speedup by doing a finite number of levels of simulation. However, this does not work in the limit.

Interesting.

If you’re stating that generic intelligence was

notlikely simulated, but generic intelligencein our situationwaslikely simulated...Doesn’t that fall afoul of the mediocrity principle applied to generic intelligence overall?

(As an aside, this does somewhat conflate ‘intelligence’ and ‘computation’; I am assuming that intelligence requires at least some non-zero amount of computation. It’s good to make this assumption explicit I suppose.)