Building brain-inspired AGI is infinitely easier than understanding the brain

Epistemic status: Trying to explain why I have certain intuitions. Not sure whether people will find this obvious vs controversial.

Part 1: Brains probably do some useful things in utterly inscrutable ways

I’m not so much interested in arguing the strong claim that the brain does some useful things in infinitely inscrutable ways—i.e., that understanding them is fundamentally impossible. I merely want to make the weaker claim that the brain probably does some useful things in ways that are for all intents and purposes inscrutable.

Where did I get this intuition? A few places:

  • Evolved FPGA circuits—see the awesome blog post On the Origin of Circuits focusing on the classic 1996 paper by Adrian Thompson. An evolved circuit of just 37 logic gates managed to perform a function which kinda seems impossible with those components. It turned out that the components were used in weird ways—the circuit ran differently on nominally-identical FPGAs, the transistors were not all used as on/​off switches, there was some electromagnetic coupling or power-line coupling going on, etc. Can we understand how this circuit works? In the paper, they didn’t try. I imagine that a good physicist, given enough time and experimental data, could get at least a vague idea of the most important aspects. But there might be subtleties that can’t really be explained better than a simulation, or maybe some component has 17 unrelated functions that occur at different parts of the cycle, or maybe you need to account for a microscopic bump in some wire, or whatever. If it were 370 components instead of 37, and there were limits on what you can measure experimentally, it would be that much harder.

  • The Busy Beaver Function Σ(n) is unknown for as low as n=5. So we have a bunch of really simple computer programs, and no one knows whether they run forever or halt. When you get to larger n it gets even worse: For n≥1919 (and perhaps much smaller n too), Σ(n) is formally undecidable. While that’s not exactly the same as saying that we will never understand these programs, I kinda expect that there are in fact programs whose asymptotic behavior really is “infinitely inscrutable”, i.e. programs which don’t halt, but where there is fundamentally no way to understand why they don’t halt, short of actually running them forever, and that’s true even if you have a brain the size of Jupiter. (I could be wrong, and this is not an important part of my argument.)

  • Riemann hypothesis: We have a simple-to-define function that exhibits an obvious pattern of behavior. Like those busy beaver Turing machines, the answer to “why” is “I dunno, we ran the calculation, and that’s what we’ve found, at least so far”. In this case, I assume that an explanation probably exists, but I find it interesting that we haven’t discovered it yet, after 150 years of intense effort.

In summary, my intuition is that:

  1. Simple components can give rise to recognizable emergent patterns of behavior for inscrutably complicated reasons that can’t necessarily be distilled down to any “explanation” beyond “we simulated it and that’s what happens”, and

  2. Neurons are not simple components, in that even if they have a legible primary input-output function, they probably have dozens of “side-channel” input-output functions that probably get sporadically used by evolution as well. (If you tug on a dendrite, then it’s a spring!)[1]

These two considerations coalesce to give me a prior expectation that there may be large numbers of very deep rabbit holes when you try to work out low-level implementation details of how the brain does any particular thing. The brain might do that thing by a beautiful, elegant, simple design … or it might do that thing in some bizarre, ridiculous way, which we will not understand except by looking in weird places, like measuring mechanical stresses on cell membranes, or by measuring flows of chemicals that by all accounts ought to have no relation whatsoever to neuron firing, or by simulating systems of 492 components which interact in a complicated way that can’t really be boiled down into anything simpler.

The book The Idea of the Brain has some great examples of the horrors facing neuroscientists trying to understand seemingly-simple neural circuits:

...Despite having a clearly established connectome of the thirty-odd neurons involved in what is called the crustacean stomatogastric ganglion, Marder’s group cannot yet fully explain how even some small portions of this system function. …in 1980 the neuroscientist Allen Selverston published a much-discussed think piece entitled “Are Central Pattern Generators Understandable?”...the situation has merely become more complex in the last four decades...The same neuron in different [individuals] can also show very different patterns of activity—the characteristics of each neuron can be highly plastic, as the cell changes its composition and function over time...

...Decades of work on the connectome of the few dozen neurons that form the central pattern generator in the lobster stomatogastric system, using electrophysiology, cell biology and extensive computer modelling, have still not fully revealed how its limited functions emerge.

Even the function of circuits like [frog] bug-detecting retinal cells—a simple, well-understood set of neurons with an apparently intuitive function—is not fully understood at a computational level. There are two competing models that explain what the cells are doing and how they are interconnected (one is based on a weevil, the other on a rabbit); their supporters have been thrashing it out for over half a century, and the issue is still unresolved. In 2017 the connectome of a neural substrate for detecting motion in Drosophila was reported, including information about which synapses were excitatory and which were inhibitory. Even this did not resolve the issue of which of those two models is correct.

I haven’t chased down these references, and can’t verify that understanding these things is really as difficult as this author says. On the other hand, these are really really simple systems; if they’re even remotely approaching the limits of our capabilities, imagine an interacting bundle of 10× or 100× more neurons, doing something more complicated, in a way that is harder to experimentally measure.

So anyway, maybe scientists will eventually understand how the brain does absolutely everything it does, at a computational level. I don’t think that’s ruled out. But I sure don’t think it’s likely, even for the simplest worm nervous system, in the foreseeable future.

Part 2: …But that doesn’t mean brain-inspired AGI is hard!

Side note 1: I use “brain-inspired AGI” in the sense of copying (or reinventing) high-level data structures and algorithms, not in the sense of copying low-level implementation details, e.g. neurons that spike. “Neuromorphic hardware” is a thing, but I see no sign that neuromorphic hardware will be relevant for AGI. Most neuromorphic hardware researchers are focused on low-power sensors, as far as I understand.

Side note 2: The claim “brain-inspired AGI is likely” is unrelated to the claim “brain-inspired AGI will bring about a better future for humankind than other types of AGIs”, although these two claims sometimes get intuitively bundled together under the heading of “cheerleading for brain-like AGI”. I have grown increasingly sympathetic to the former claim, but am undecided about the latter claim, and see it as an open research question—indeed, a particularly urgent open question, as it informs high-leverage research prioritization decisions that we can act on immediately.

OK, back to the main text. I want to argue something like this:

If some circuit in the brain is doing something useful, then it’s humanly feasible to understand what that thing is and why it’s useful, and to write our own CPU code that does the same useful thing.

In other words, the brain’s implementation of that thing can be super-complicated, but the input-output relation cannot be that complicated—at least, the useful part of the input-output relation cannot be that complicated.

The crustacean stomatogastric ganglion central pattern generators discussed above are a great example: their mechanisms are horrifically complicated, but their function is simple: they create a rhythmic oscillation. Hey, you need a rhythmic oscillation in your AGI? No problem! I can do that in one line of Python.

At the end of the day, we survive by exploiting regularities in our ecological niche and environment. If the brain does something that’s useful, I feel like there has to be a legible explanation in those terms; and from that, that there has to be legible CPU code that does the same thing.

I feel most strongly about the boldface statement above in regards to the neocortex. The neocortex is a big uniform-ish machine that learns patterns in inputs and outputs and rewards, builds a predictive model, and uses that model to choose outputs that increase rewards, using some techniques we already understand (1, 2, 3, etc.) and others we don’t. If the neocortex does some information-processing thing, and the result is that it does its job better, then I feel like there has to be some legible explanation for what it’s doing, why, and how, in terms of that primary prediction-and-action task … there has to be some reason that it systematically helps run smarter searches, or generates better models, or makes more accurate predictions, etc.

I feel much less strongly about that above boldface statement in regards to the rest of the brain (the home of evolved instinctive responses to different situations, I would argue, see here). For example, I can definitely imagine that the human brain has an instinctual response to a certain input which is adaptive in 500 different scenarios that ancestral humans typically encountered, and maladaptive in another 499 scenarios that ancestral humans typically encountered. So on average it’s beneficial, and our brains evolved to have that instinct, but there’s no tidy story about why that instinct is there and no simple specification for exactly what calculation it’s doing.

By the same token, in this sense, I expect that understanding the key operating principles of human intelligence will be dramatically easier than understanding the key operating principles of the nervous system of a 100-neuron microscopic worm!! Weird thought, right?! But again, every little aspect of those worm neurons could be a random side-effect of something else, or it could be an adaptive strategy for some situation that comes up in the worm’s environment once every 5 generations, and how on earth are you ever going to figure out which is which?? And if you can’t figure out which is which, how can you hope to “understand” the system in any way besides running a molecule-by-molecule simulation?? By contrast, “human intelligence” is a specific suite of capabilities—a known target to aim for.

(Added for clarification: The point of the previous paragraph is that “understanding how a nervous system gives rise to a particular identifiable set of behaviors” is tractable, whereas “understanding the entire design spec of a nervous system”—i.e., every way that it optimizes inclusive genetic fitness—is not tractable. And I’m saying that this is such a big factor that it outweighs even the many-orders-of-magnitude difference in complexity between microscopic worms’ and humans’ nervous systems.)


I guess I have a not-terribly-justified gut feeling that we already vaguely understand how neocortical algorithms work to create human intelligence, and that “soon” (few decades?) this vague understanding will develop into full-fledged AGIs, assuming that the associated R&D continues. On the other hand, I acknowledge that this is very much not a common view, including among people far more knowledgeable than myself, and in particular there are plenty of neuroscientists who view the project of understanding the human brain as a centuries-long endeavor. I guess this post is a little piece of how I reconcile those two facts: At least in some cases, when neuroscientists talk about understanding the brain, I think they mean understanding what all the calculations are and how they are implemented—like what those researchers have been trying and failing to do with the crustacean stomatogastric ganglion in that book quote from part 1 above—but for a human brain with 10⁹× more neurons. Yup, that sounds like a centuries-long endeavor to me too! But I think understanding human intelligence well enough to make a working AGI algorithm is dramatically easier than that.

...And I do think that latter type of work is actually getting done, particularly by those researchers who go in armed with an understanding of (1) what useful algorithms might look like in general, (2) neuroscience, and (3) psychology /​ behavior, and then go hunting for ways that those three ingredients might come together, without getting too bogged down in explaining every last neuron spike.

  1. Incidentally, this is also the lens through which I think about the arguments over whether or not glial cells (in addition to neurons) do computations. If glial cells are predictable systems that interact with neurons, of course they’ll wind up getting entrained in computations! That’s what evolution does, just like an evolved PCB circuit would probably use the board itself as a mechanical resonator or whatever other ridiculous things you can imagine. So my generic expectation is: (1) If you removed the glial cells, it would break lots of brain computations; (2) If there were no such thing as glial cells, a functionally-identical circuit would have evolved, and I bet it wouldn’t even look all that different. By the way, I know almost nothing about glial cells, I’m just speculating. :-) ↩︎