Yes, sometimes we don’t notice. We miss a lot. But there are also ordinary clarifications like “did I hear you correctly” and “what did you mean by that?” Noticing that you didn’t understand something isn’t rare. If we didn’t notice when something seems absurd, jokes wouldn’t work.
skybrian
It’s not quite the same, because if you’re confused and you notice you’re confused, you can ask. “Is this in American or European date format?” For GPT-3 to do the same, you might need to give it some specific examples of resolving ambiguity this way, and it might only do so when imitating certain styles.
It doesn’t seem as good as a more built-in preference for noticing and wanting to resolve inconsistency? Choosing based on context is built in using attention, and choosing randomly is built in as part of the text generator.
It’s also worth noticing that the GPT-3 world is the corpus, and a web corpus is a inconsistent place.
GPT-3, belief, and consistency
Having demoable technology is much different than having reliable technology. Take the history of driverless cars. Five teams completed the second DARPA grand challenge in 2005. Google started development secretly in 2009 and announced the project in October 2010. Waymo started testing without a safety driver on public roads in 2017. So we’ve had driverless cars for a decade, sort of, but we are much more cautious about allowing them on public roads.
Unreliable technologies can be widely used. GPT-3 is a successor to autocomplete, which everyone already has on their cell phones. Search engines don’t guarantee results and neither does Google Translate, but they are widely used. Machine learning also works well for optimization, where safety is guaranteed by the design but you want to improve efficiency.
I think when people talk about a “revolution” it goes beyond the unreliable use cases, though?
In that case, I’m looking for people sharing interesting prompts to use on AI Dungeon.
Where is this? Is it open to people who don’t have access to the API?
[Question] Where do people discuss doing things with GPT-3?
I’m suggesting something a little more complex than copying. GPT-3 can give you a random remix of several different clichés found on the Internet, and the patchwork isn’t necessarily at the surface level where it would come up in a search. Readers can be inspired by evocative nonsense. A new form of randomness can be part of a creative process. It’s a generate-and-test algorithm where the user does some of the testing. Or, alternately, an exploration of Internet-adjacent story-space.
It’s an unreliable narrator and I suspect it will be an unreliable search engine, but yeah, that too.
I was making a different point, which is that if you use “best of” ranking then you are testing a different algorithm than if you’re not using “best of” ranking. Similarly for other settings. It shouldn’t be surprising that we see different results if we’re doing different things.
It seems like a better UI would help us casual explorers share results in a way that makes trying the same settings again easier; one could hit a “share” button to create a linkable output page with all relevant settings.
It could also save the alternate responses that either the user or the “best-of” ranking chose not to use. Generate-and-test is a legitimate approach, if you do it consistently, but saving the alternate takes would give us a better idea how good the generator alone is.
I don’t see documentation for the GPT-3 API on OpenAI’s website. Is it available to the public? Are they doing their own ranking or are you doing it yourself? What do you know about the ranking algorithm?
It seems like another source of confusion might be people investigating the performance of different algorithms and calling them all GPT-3?
How do you do ranking? I’m guessing this is because you have access to the actual API, while most of us don’t?
On the bright side, this could be a fun project where many of us amateurs learn how to do science better, but the knowledge of how to do that isn’t well distributed yet.
We take the web for granted, but maybe we shouldn’t. It’s very large and nobody can read it all. There are many places we haven’t been that probably have some pretty good writing. I wonder about the extent to which GPT-3 can be considered a remix of the web that makes it seem magical again, revealing aspects of it that we don’t normally see? When I see writing like this, I wonder what GPT-3 saw in the web corpus. Is there an archive of Tolkien fanfic that was included in the corpus? An undergrad physics forum? Conversations about math and computer science?
Replicating the replication crisis with GPT-3?
Rather than putting this in binary terms (capable of reason or not), maybe we should think about what kinds of computation could result in a response like this?
Some kinds of reasoning would let you generate plausible answers based on similar questions you’ve already seen. People who are good at taking tests can get reasonably high scores on subjects they don’t fully comprehend, basically by bluffing well and a bit of luck. Perhaps something like that is going on here?
In the language of “Thinking, Fast and Slow”, this might be “System 1″ style reasoning.
Narrowing down what’s really going on probably isn’t going to be done in one session or by trying things casually. Particularly if you have randomness turned on, so you’d want to get a variety of answers to understand the distribution.
GPT-3 has partially memorized a web corpus that probably includes a lot of basic physics questions and answers. Some of the physics answers in your interview might be the result of web search, pattern match, and context-sensitive paraphrasing. This is still an impressive task but is perhaps not the kind of reasoning you are hoping for?
From basic Q&A it’s pretty easy to see that GPT-3 sometimes memorizes not only words but short phrases like proper names, song titles, and popular movie quotes, and probably longer phrases if they are common enough.
Google’s Q&A might seem more magical too if they didn’t link to the source, which gives away the trick.
[Question] Charity to help people get US stimulus payments?
This is more about expanding the question with slightly more specific questions:
Currently it seems like there are many people who are not scared enough, but I wonder if sentiment could quickly go the other way?
A worst-case scenario for societal collapse is that some “essential” workers are infected and others decide that it is too risky to keep working, and there are not enough people to replace them. Figuring out which sectors might be most likely to have critical labor shortages seems important.
An example of a “labor” shortage might be a lack of volunteers for blood donations.
Other than that, logistical supply bottlenecks seem more of an issue?
It seems likely that supply will be more important than demand until the recovery phase and then a big question will be to what extent do people make a persistent change in their preferences. Going without stuff for a while might cause some reconsideration about how important it actually is. An example might be that more people learn to cook and decide they like it, or maybe they try Soylent or whatever. Or, perhaps exercising in a gym is less important for people who get into an exercise routine at home or outside?
Maybe private ownership of cars and suburban living (enforcing social distance) get a boost, along with increased remote work making it more practical. The costs of lower density living might not seem so pressing?
Yeah, I don’t see it changing that drastically; more likely it will be a lot of smaller and yet significant changes that make old movies look dated. Something like how the airports changed after 9/11, or more trivially, that time when all the men in America stopped wearing hats.
One aspect that might be worth thinking about is the speed of spread. Seeing someone once a week means that it slows down the spread by 3 1⁄2 days on average, while seeing them once a month slows things down by 15 days on average. It also seems like they are more likely to find out they have it before they spread it to you?