Jessica Taylor. CS undergrad and Master’s at Stanford; former research fellow at MIRI.

I work on decision theory, social epistemology, strategy, naturalized agency, mathematical foundations, decentralized networking systems and applications, theory of mind, and functional programming languages.

Blog: unstableontology.com

Twitter: https://twitter.com/jessi_cata

Regarding quantum, I’d missed the bottom text. It seems if I only read the main text, the obvious interpretation is that points are events and the circles restrict which other events they can interact with. He says “At the same time, conspansion gives the quantum wave function of objects a new home: inside the conspanding objects themselves” which implies the wave function is somehow located in the objects.

From the diagram text, it seems he is instead saying that each circle represents entangled wavefunctions of some subset of objects that generated the circle. I still don’t see how to get quantum non-locality from this. The wave function can be represented as a complex valued function on configuration space; how could it be factored into a number of entanglements that only involve a small number of objects? In probability theory you can represent a probability measure as a factor graph, where each factor only involves a limited subset of variables, but (a) not all distributions can be efficiently factored this way, (b) generalizing this to quantum wave functions is additionally complicated due to how wave functions differ from probability distributions.