Knowing the TAM would clearly be useful for deciding whether or not to continue investing in compute scaling, but trying to estimate the TAM ahead of time is very speculative, whereas the revenues from yesterday’s investments can be observed before deciding whether to invest today for more revenue tomorrow. Therefore I think investment decisions will be driven in part by revenues, and that people trying to forecast future investment decisions should make forecasts about future revenues, so that we can track whether those revenue forecasts are on track and what that implies for future investment forecasts.
I haven’t done the revenue analysis myself, but I’d love to read something good on the revenue needed to justify different datacenter investments, and whether the companies are on track to hit that revenue.
Agreed with the other answers on the reasons why there’s no GiveWell for AI safety. But in case it’s helpful, I should say that Longview Philanthropy offers advice to donors looking to give >$100K per year to AI safety. Our methodology is a bit different from GiveWell’s, but we do use cost-effectiveness estimates. We investigate funding opportunities across the AI landscape from technical research to field-building to policy in the US, EU, and around the world, trying to find the most impactful opportunities for the marginal donor. We also do active grantmaking, such as our calls for proposals on hardware-enabled mechanismsand digital sentience. More details here. Feel free to reach out to aidan@longview.org or simran@longview.org if you’d like to learn more.