Evan Hubinger (he/him/his) (evanjhub@gmail.com)
Head of Alignment Stress-Testing at Anthropic. My posts and comments are my own and do not represent Anthropic’s positions, policies, strategies, or opinions.
Previously: MIRI, OpenAI
See: “Why I’m joining Anthropic”
Selected work:
Great post! Fwiw, I think I basically agree with everything you say here, with the exception of the idea that talking about potential future alignment issues has a substantial effect on reifying them. I think that perspective substantially underestimates just how much optimization pressure is applied in post-training (and in particular how much will be applied in the future—the amount of optimization pressure applied in post-training is only increasing). Certainly, discussion of potential future alignment issues in the pre-training corpus will have an effect on the base model’s priors, but those priors get massively swamped by post-training. That being said, I do certainly think it’s worth thinking more about and experimenting with better ways to do data filtering here.
To make this more concrete in a made-up toy model: if we model there as being only two possible personae, a “good” persona and a “bad” persona, I suspect including more discussion of potential future alignment issues in the pre-training distribution might shift the relative weight of these personae by a couple bits or so on the margin, but post-training applies many more OOMs of optimization power than that, such that the main question of which one ends up more accessible is going to be based on which one was favored in post-training.
(Also noting that I added this post to the Alignment Forum from LessWrong.)