FWIW, Hanson has elsewhere promoted the idea that algorithmic progress is primarily due to hardware progress. Relevant passage:
Maybe there are always lots of decent ideas for better algorithms, but most are hard to explore because of limited computer hardware. As hardware gets better, more new ideas can be explored, and some of them turn out to improve on the prior best algorithms. This story seems to at least roughly fit what I’ve heard about the process of algorithm design.
So he presumably would endorse the claim that HLMI will likely requires several tens of OOM more compute than we currently have, but that a plateauing in other inputs (such as AI researchers) won’t be as relevant. (Here’s also another post of Hanson where he endorses a somewhat related claim that we should expect exponential increases in hardware to translate to ~linear social impact and rate of automation.)
This sample seems pretty similar to the sort of thing that a human might dream, or that a human might say during/immediately after a stroke, a seizure, or certain types of migraines. It’s clear that the AI is failing here, but I’m not sure that humans don’t also sometimes fail in somewhat similar ways, or that there’s a fundamental limitation here that needs to be overcome in order to reach AGI.
^I guess the corollary here would be that human minds may also be roiling chaos which randomly coalesce into ephemeral structures possessing properties of floors, but just are statistically much more likely to do so than current language models.