[Link] Wavefunctions: from Linear Algebra to Spinors

Link post

I wrote this blogpost because I thought it took an excessive amount of digging to understand what a spinor was. My original motivation was to understand wavefunctions more concretely since I recently discovered that wavefunctions are spinor-valued, not (necessarily) complex-valued. That took me down a rabbit hole of gamma matrices, geometric algebra, quaternions, and about a dozen other topics.

I think physics is taught very badly. Modern physical theories are built on some very heavy and very powerful mathematical machinery. That machinery is absolutely worth learning, but expositions on physical phenomena seem to have no middle ground between “breadth-first” (require all the background before being able to understand anything), “assembly-level” (discuss the raw equations without any intuition), and “vague analogies.” It seems entirely possible to introduce slices of very abstract math as needed so people can go deep without having to go wide and without having to sacrifice either intuition or precision.

Anyway. This blogpost was a proof of concept. It assumes a background in linear algebra, no more than what’s taught to a STEM freshman. I try to explain a vertical slice of the mathematical machinery needed to understand spinors. I’m not a physicist, nor do I have access to one, so I might have gotten something wrong. If you notice any errors, please let me know.