Is it in AI’s interest (a big assumption that is has interests at all, I know) to become so human-specific that it loses its ability to generalize?

There’s an approach called learning the prior through imitative generalization, that seemed to me a promising way to address this problem. Most relevant quotes from that article:

We might hope that our models will naturally generalize correctly from easy-to-answer questions to the ones that we care about. However, a natural pathological generalisation is for our models to only give us ‘human-like’ answers to questions, even if it knows the best answer is different. If we only have access to these human-like answers to questions, that probably doesn’t give us enough information to supervise a superhuman model.

What we’re going to call ‘Imitative Generalization’ is a possible way to narrow the gap between the things our model knows, and the questions we can train our model to answer honestly. It avoids the pathological generalisation by only using ML for IID tasks, and imitating the way humans generalize. This hopefully gives us answers that are more like ‘how a human would answer if they’d learnt from all the data the model has learnt from’. We supervise how the model does the transfer, to get the sort of generalisation we want.

Going by GPT-2′s BPEs [1], and based on the encoder downloaded via OpenAI’s script, there are 819 (single) tokens/embeddings that uniquely map to the numbers from 0-1000, 907 when going up to 10,000, and 912 up to 200,000 [2]. These embeddings of course get preferentially fed into the model in order to maximize the number of characters in the context window and thereby leverage the statistical benefit of BPEs for language modeling. Which bears to mind that the above counts exclude numeric tokens that have a space at the beginning [3].

My point here being that, IIUC, for the language model to actually be able to manipulate individual digits, as well as pick up on the elementary operations of arithmetic (e.g. carry, shift, etc.), the expected number of unique tokens/embeddings might have to be limited to 10 – the base of the number system – when counting from 0 to the largest representable number [2].

[1] From the GPT-3 paper, it was noted:

[2] More speculatively, I think that this limitation makes extrapolation on certain abilities (arithmetic, algebra, coding) quite difficult without knowing whether its BPE will be optimized for the manipulation of individual digits/characters if need be, and that this limits the generalizability of studies such as GPT-3 not being able to do math.

[3] For such tokens, there are a total 505 up to 1000. Like the other byte pairs, these may have been automatically mapped based on the distribution of n-grams in some statistical sample (and so easily overlooked).