That makes sense. My higher level concern with gradient routing (to some extent true for any other safety method) being used throughout training rather than after training is alignment tax, where it might lead to significantly lower performance and not get adopted in frontier models.
Evidence of this for gradient routing: people have tried various forms of modular training before [1], [2] and they never really caught on because its always better to train a combined model which allows optimal sharing of parameters.
Its still a cool idea though, and I would be happy to see it work out :)
[1] Andreas, Jacob et al., “Neural Module Networks.”, CVPR 2016
[2] Ebrahimi, Sayna, et al. “Adversarial continual learning.” ECCV 2020
That makes sense. My higher level concern with gradient routing (to some extent true for any other safety method) being used throughout training rather than after training is alignment tax, where it might lead to significantly lower performance and not get adopted in frontier models.
Evidence of this for gradient routing: people have tried various forms of modular training before [1], [2] and they never really caught on because its always better to train a combined model which allows optimal sharing of parameters.
Its still a cool idea though, and I would be happy to see it work out :)
[1] Andreas, Jacob et al., “Neural Module Networks.”, CVPR 2016
[2] Ebrahimi, Sayna, et al. “Adversarial continual learning.” ECCV 2020