Space dilation happens because the patterns caused by high speed travel cause the 3D grid pattern to become unstable and the illusion that dimensions exist breaks down.
In special relativity all inertial reference frames are equivalent, even those moving at 99% of lightspeed. None is more unstable than the other, all physics works exactly the same. Good luck reproducing that with any kind of grid. You’d be more likely to get some kind of waves that propagate at fixed speed along the grid, giving you a privileged rest frame, like in the old discredited theories of aether.
Quantum effects happen when patterns (particles) spread across nodes that still have connections between them besides those connections that make up the primary 3D grid.
Explain Grover’s algorithm then. How the hell can I guess a black-box secret with n possibilities using only sqrt(n) attempts. Hidden connections aren’t enough, quantum physics allows more computation as well.
Also hidden connections would make FTL communication possible, which it isn’t. You’d better learn how entanglement works. Two distant observers can’t use it to communicate, but when they come together later and compare notes, it makes them go “hmm that’s spooky”. It’s a very delicate middle ground. I wrote up a short example sometime ago, maybe it’ll help.
More generally, don’t try to come up with physical theories if you don’t wanna learn physics. Knowing physics will let you come up with ten such “new perspectives” before breakfast and do some useful work besides. They will be crazier too. How about the holographic universe? Or Wheeler’s idea that all electrons have the same properties because they’re the same electron going back and forth in time? In comparison, most ideas coming from non-physicists are painfully boring (not to mention wrong).
You’d be more likely to get some kind of waves that propagate at fixed speed along the grid, giving you a privileged rest frame, like in the old discredited theories of aether.
I’ll try to steelman Florian_Dietz.
I don’t know much anything about relativity, but waves on a grid in computational fluid dynamics (CFD for short) typically don’t have the problem you describe. I do vaguely recall some strange methods that do in a Lagrangian CFD class I took, but they are definitely non-standard and I think were used merely as simple illustrations of a class of methods.
Plus, some CFD methods like the numerical method of characteristics discretize in different coordinates that follow the waves. This can resolve waves really well, but it’s confusing to set up in higher dimensions.
CFD methods are just particularly well developed numerical methods for physics. From what I understand analogous methods are used for computational physics in other domains (even relativity).
I don’t know much anything about relativity, but waves on a grid in computational fluid dynamics (CFD for short) typically don’t have the problem you describe.
Not even for wavelengths not much longer than the grid spacing?
I don’t see how that would be a problem. Perhaps I’m missing something, so if you could explain I’d be appreciative.
Usually the problem is that wavelengths smaller than the grid size obviously can’t be resolved. A class of turbulence modeling approaches can help with that to a certain extent. This class of methods is called “large eddy simulation”, or LES for short. You apply a low pass filter to the governing equations and then develop models for “unclosed” terms. In practice this is typically done less rigorously than I’d like, but it’s a valid modeling approach in general that should see more use in other fields. (Turbulence modeling is an interesting field in itself that a rational person might be interested in studying simply for the intellectual challenge.)
In special relativity all inertial reference frames are equivalent, even those moving at 99% of lightspeed. None is more unstable than the other, all physics works exactly the same. Good luck reproducing that with any kind of grid. You’d be more likely to get some kind of waves that propagate at fixed speed along the grid, giving you a privileged rest frame, like in the old discredited theories of aether.
Explain Grover’s algorithm then. How the hell can I guess a black-box secret with n possibilities using only sqrt(n) attempts. Hidden connections aren’t enough, quantum physics allows more computation as well.
Also hidden connections would make FTL communication possible, which it isn’t. You’d better learn how entanglement works. Two distant observers can’t use it to communicate, but when they come together later and compare notes, it makes them go “hmm that’s spooky”. It’s a very delicate middle ground. I wrote up a short example sometime ago, maybe it’ll help.
More generally, don’t try to come up with physical theories if you don’t wanna learn physics. Knowing physics will let you come up with ten such “new perspectives” before breakfast and do some useful work besides. They will be crazier too. How about the holographic universe? Or Wheeler’s idea that all electrons have the same properties because they’re the same electron going back and forth in time? In comparison, most ideas coming from non-physicists are painfully boring (not to mention wrong).
I’ll try to steelman Florian_Dietz.
I don’t know much anything about relativity, but waves on a grid in computational fluid dynamics (CFD for short) typically don’t have the problem you describe. I do vaguely recall some strange methods that do in a Lagrangian CFD class I took, but they are definitely non-standard and I think were used merely as simple illustrations of a class of methods.
Plus, some CFD methods like the numerical method of characteristics discretize in different coordinates that follow the waves. This can resolve waves really well, but it’s confusing to set up in higher dimensions.
CFD methods are just particularly well developed numerical methods for physics. From what I understand analogous methods are used for computational physics in other domains (even relativity).
Not even for wavelengths not much longer than the grid spacing?
I don’t see how that would be a problem. Perhaps I’m missing something, so if you could explain I’d be appreciative.
Usually the problem is that wavelengths smaller than the grid size obviously can’t be resolved. A class of turbulence modeling approaches can help with that to a certain extent. This class of methods is called “large eddy simulation”, or LES for short. You apply a low pass filter to the governing equations and then develop models for “unclosed” terms. In practice this is typically done less rigorously than I’d like, but it’s a valid modeling approach in general that should see more use in other fields. (Turbulence modeling is an interesting field in itself that a rational person might be interested in studying simply for the intellectual challenge.)