Historically commutative algebra came out of algebraic number theory, and the rings involved—Z,Z_p, number rings, p-adic local rings… - are all (in the modern terminology) Dedekind domains.
Dedekind domains are not always principal, and this was the reason why mathematicians started studying ideals in the first place. However, the structure of finitely generated modules over Dedekind domains is still essentially determined by ideals (or rather fractional ideals), reflecting to some degree the fact that their geometry is simple (1-dim regular Noetherian domains).
This could explain why there was a period where ring theory developed around ideals but the need for modules was not yet clarified?
Historically commutative algebra came out of algebraic number theory, and the rings involved—Z,Z_p, number rings, p-adic local rings… - are all (in the modern terminology) Dedekind domains.
Dedekind domains are not always principal, and this was the reason why mathematicians started studying ideals in the first place. However, the structure of finitely generated modules over Dedekind domains is still essentially determined by ideals (or rather fractional ideals), reflecting to some degree the fact that their geometry is simple (1-dim regular Noetherian domains).
This could explain why there was a period where ring theory developed around ideals but the need for modules was not yet clarified?