But now you have to catalogue all the possible risks of nanotech, and add a category for “risks I haven’t thought of”, and then claim that the total probability of all that is < 1⁄5000
The 1⁄5000 number only works for the really large asteroids (> 1 km in diameter). Note that as I pointed earlier, much smaller asteroids can be locally devastating. The resources that go to finding the very large asteroids also helps track the others, reducing the chance of human life lost even outside existential risk scenarios. And as I pointed out, there are a lot of other potential space based existential risks. That said, I think you’ve made a very good point above about the many non-gray goo scenarios that make nanotech a severe potential existential risk. So I think I’ll agree that if one’s comparing probability of a nanotech existential risk scenario compared to probability of a meteorite existential risk scenario, the nanotech is more likely.
Your point about the impact of nanotech on nuclear proliferation I find particularly disturbing. The potential for nanotech to greatly increase the efficiency of enriching uranium seems deeply worrisome and that’s really the main practical limitation in building fission weapons.
Upvoted for updating. I agree that smaller asteroids are an important consideration for space; we expect about one Tunguska event per century I believe, which stands a ~5% chance of hitting a populated area as far as I know. Saving a 5% chance of the next Tunguska hitting a populated area is a good thing.
The 1⁄5000 number only works for the really large asteroids (> 1 km in diameter). Note that as I pointed earlier, much smaller asteroids can be locally devastating. The resources that go to finding the very large asteroids also helps track the others, reducing the chance of human life lost even outside existential risk scenarios. And as I pointed out, there are a lot of other potential space based existential risks. That said, I think you’ve made a very good point above about the many non-gray goo scenarios that make nanotech a severe potential existential risk. So I think I’ll agree that if one’s comparing probability of a nanotech existential risk scenario compared to probability of a meteorite existential risk scenario, the nanotech is more likely.
Your point about the impact of nanotech on nuclear proliferation I find particularly disturbing. The potential for nanotech to greatly increase the efficiency of enriching uranium seems deeply worrisome and that’s really the main practical limitation in building fission weapons.
Upvoted for updating. I agree that smaller asteroids are an important consideration for space; we expect about one Tunguska event per century I believe, which stands a ~5% chance of hitting a populated area as far as I know. Saving a 5% chance of the next Tunguska hitting a populated area is a good thing.