The continuous state-space is coarse-grained into discrete cells where the dynamics are approximately markovian (the theory is currently classical) & the “laws of physics” probably refers to the stochastic matrix that specifies the transition probabilities of the discrete cells (otherwise we could probably deal with infinite precision through limit computability)
The current theory is based on classical hamiltonian mechanics, but I think the theorems apply whenever you have a markovian coarse-graining. Fermion doubling is a problem for spacetime discretization in the quantum case, so the coarse-graining might need to be different. (E.g. coarse-grain the entire hilbert space, which might have locality issues but probably not load-bearing for algorithmic thermodynamics)
On outside view, quantum reduces to classical (which admits markovian coarse-graining) in the correspondence limit, so there must be some coarse-graining that works
The continuous state-space is coarse-grained into discrete cells where the dynamics are approximately markovian (the theory is currently classical) & the “laws of physics” probably refers to the stochastic matrix that specifies the transition probabilities of the discrete cells (otherwise we could probably deal with infinite precision through limit computability)
Doesn’t such a discretization run into the fermion doubling problem?
The current theory is based on classical hamiltonian mechanics, but I think the theorems apply whenever you have a markovian coarse-graining. Fermion doubling is a problem for spacetime discretization in the quantum case, so the coarse-graining might need to be different. (E.g. coarse-grain the entire hilbert space, which might have locality issues but probably not load-bearing for algorithmic thermodynamics)
On outside view, quantum reduces to classical (which admits markovian coarse-graining) in the correspondence limit, so there must be some coarse-graining that works