I think the WBE intuition is probably the more useful one, and even more so when it comes to the also important question of ‘how many powerful human-level AIs should there be around, soon after AGI’ - given e.g. estimates of computational requirements like in https://www.youtube.com/watch?v=mMqYxe5YkT4. Basically, WBEs set a bit of a lower bound ( given that they’re both a proof of existence and that, in many ways, the physical instantiations (biological brains) are there, lying in wait for better tech to access them in the right format and digitize them. Also, that better tech might be coming soon, especially as AI starts accelerating science and automating tasks more broadly—see e.g. https://www.sam-rodriques.com/post/optical-microscopy-provides-a-path-to-a-10m-mouse-brain-connectome-if-it-eliminates-proofreading.
I think the WBE intuition is probably the more useful one, and even more so when it comes to the also important question of ‘how many powerful human-level AIs should there be around, soon after AGI’ - given e.g. estimates of computational requirements like in https://www.youtube.com/watch?v=mMqYxe5YkT4. Basically, WBEs set a bit of a lower bound ( given that they’re both a proof of existence and that, in many ways, the physical instantiations (biological brains) are there, lying in wait for better tech to access them in the right format and digitize them. Also, that better tech might be coming soon, especially as AI starts accelerating science and automating tasks more broadly—see e.g. https://www.sam-rodriques.com/post/optical-microscopy-provides-a-path-to-a-10m-mouse-brain-connectome-if-it-eliminates-proofreading.