In some sense none of this matters because if you want to send a bit through a wire using minimal energy, and you aren’t constrained much by wire thickness or the requirement of a somewhat large encoder/decoder devices, you can just skip the electron middleman and use EM waves directly—ie optical.
I don’t have any strong fundemental reason why you couldn’t use reversible signaling through a wave propagating down a wire—it is just another form of wave as you point out.
The landauer bound till applies of course, it just determines the energy involved rather than dissipated. If the signaling mechanism is irreversible, then the best that can be achieved is on order ~1e-21 J/bit/nm. (10x landauer bound for minimal reliability over a long wire, but distance scale of about 10 nm from the mean free path of metals). Actual coax cable wire energy is right around that level, which suggests to me that it is irreversible for whatever reason.
In some sense none of this matters because if you want to send a bit through a wire using minimal energy, and you aren’t constrained much by wire thickness or the requirement of a somewhat large encoder/decoder devices, you can just skip the electron middleman and use EM waves directly—ie optical.
I don’t have any strong fundemental reason why you couldn’t use reversible signaling through a wave propagating down a wire—it is just another form of wave as you point out.
The landauer bound till applies of course, it just determines the energy involved rather than dissipated. If the signaling mechanism is irreversible, then the best that can be achieved is on order ~1e-21 J/bit/nm. (10x landauer bound for minimal reliability over a long wire, but distance scale of about 10 nm from the mean free path of metals). Actual coax cable wire energy is right around that level, which suggests to me that it is irreversible for whatever reason.