It’s worth pointing out that IQ numbers are inherently non-parametric: we simply have a ranking of performance on IQ tests, which are then scaled to fit a normal distribution.
If GDP ~ exp(IQ), that means that the correlation is better if we scale the rankings to fit a log-normal distribution instead (this is not entirely true because exp(mean(IQ)) is not the same as mean(exp(IQ)), but the geometric mean and arithmetic mean should be highly correlated with each other as well). I suspect that this simply means that GDP approximately follows a log-normal distribution.
I suspect that this simply means that GDP approximately follows a log-normal distribution.
This doesn’t quite follow, since both per capita GDP and mean national IQ aren’t drawn from the same sort of distribution as individual production and individual IQ are, but I agree with the broader comment that it is natural to think of the economic component of intelligence measured in dollars per year as lognormally distributed.
It’s worth pointing out that IQ numbers are inherently non-parametric: we simply have a ranking of performance on IQ tests, which are then scaled to fit a normal distribution.
If GDP ~ exp(IQ), that means that the correlation is better if we scale the rankings to fit a log-normal distribution instead (this is not entirely true because exp(mean(IQ)) is not the same as mean(exp(IQ)), but the geometric mean and arithmetic mean should be highly correlated with each other as well). I suspect that this simply means that GDP approximately follows a log-normal distribution.
This doesn’t quite follow, since both per capita GDP and mean national IQ aren’t drawn from the same sort of distribution as individual production and individual IQ are, but I agree with the broader comment that it is natural to think of the economic component of intelligence measured in dollars per year as lognormally distributed.