Evolution is still in the process of solving decision theory, and all its attempted solutions so far are way, way overparameterized. Maybe it’s on to something?
It takes a large model (whether biological brain or LLM) just to comprehend and evaluate what is being presented in a Newcomb-like dilemma. The question is whether there exists some computationally simple decision-making engine embedded in the larger system that the comprehension mechanisms pass the problem to or whether the decision-making mechanism itself needs to spread its fingers diffusely through the whole system for every step of its processing.
It seems simple decision-making engines like CDT, EDT, and FDT can get you most of the way to a solution in most situations, but those last few percentage points of optimality always seem to take a whole lot more computational capacity.
Evolution is still in the process of solving decision theory, and all its attempted solutions so far are way, way overparameterized. Maybe it’s on to something?
It takes a large model (whether biological brain or LLM) just to comprehend and evaluate what is being presented in a Newcomb-like dilemma. The question is whether there exists some computationally simple decision-making engine embedded in the larger system that the comprehension mechanisms pass the problem to or whether the decision-making mechanism itself needs to spread its fingers diffusely through the whole system for every step of its processing.
It seems simple decision-making engines like CDT, EDT, and FDT can get you most of the way to a solution in most situations, but those last few percentage points of optimality always seem to take a whole lot more computational capacity.