I agree with this and would like to add that scaling along the inference-time axis seems to be more likely to rapidly push performance in certain closed-domain reasoning tasks far beyond human intelligence capabilities (likely already this year!) which will serve as a very convincing show of safety to many people and will lead to wide adoption of such models for intellectual task automation. But without the various forms of experiential and common-sense reasoning humans have, there’s no telling where and how such a “superhuman” model may catastrophically mess up simply because it doesn’t understand a lot of things any human being takes for granted. Given the current state of AI development, this strikes me as literally the shortest path to a paperclip maximizer. Well, maybe not that catastrophic, but hey, you neverknow.
In terms of how immediately it accelerates certain adoption-related risks, I don’t think this bodes particularly well. I would prefer a more evenly spread cognitive capability.
I agree with this and would like to add that scaling along the inference-time axis seems to be more likely to rapidly push performance in certain closed-domain reasoning tasks far beyond human intelligence capabilities (likely already this year!) which will serve as a very convincing show of safety to many people and will lead to wide adoption of such models for intellectual task automation. But without the various forms of experiential and common-sense reasoning humans have, there’s no telling where and how such a “superhuman” model may catastrophically mess up simply because it doesn’t understand a lot of things any human being takes for granted. Given the current state of AI development, this strikes me as literally the shortest path to a paperclip maximizer. Well, maybe not that catastrophic, but hey, you never know.
In terms of how immediately it accelerates certain adoption-related risks, I don’t think this bodes particularly well. I would prefer a more evenly spread cognitive capability.