Lower lambda. I’d now use more like lambda = 0.4 as my median. There’s really not much evidence pinning this down; I think Tamay Besiroglu thinks there’s some evidence for values as low as 0.2.
Isn’t this really implausible? This implies that if you had 1000 researchers/engineers of average skill at OpenAI doing AI R&D, this would be as good as having one average skill researcher running at 16x (10000.4) speed. It does seem very slightly plausible that having someone as good as the best researcher/engineer at OpenAI run at 16x speed would be competitive with OpenAI, but that isn’t what this term is computing. 0.2 is even more crazy, implying that 1000 researchers/engineers is as good as one researcher/engineer running at 4x speed!
I think 0.4 is far on the lower end (maybe 15th percentile) for all the way down to one accelerated researcher, but seems pretty plausible at the margin.
As in, 0.4 suggests that 1000 researchers = 100 researchers at 2.5x speed which seems kinda reasonable while 1000 researchers = 1 researcher at 16x speed does seem kinda crazy / implausible.
So, I think my current median lambda at likely margins is like 0.55 or something and 0.4 is also pretty plausible at the margin.
Ok, I think what is going on here is maybe that the constant you’re discussing here is different from the constant I was discussing. I was trying to discuss the question of how much worse serial labor is than parallel labor, but I think the lambda you’re talking about takes into account compute bottlenecks and similar?
Isn’t this really implausible? This implies that if you had 1000 researchers/engineers of average skill at OpenAI doing AI R&D, this would be as good as having one average skill researcher running at 16x (10000.4) speed. It does seem very slightly plausible that having someone as good as the best researcher/engineer at OpenAI run at 16x speed would be competitive with OpenAI, but that isn’t what this term is computing. 0.2 is even more crazy, implying that 1000 researchers/engineers is as good as one researcher/engineer running at 4x speed!
I think 0.4 is far on the lower end (maybe 15th percentile) for all the way down to one accelerated researcher, but seems pretty plausible at the margin.
As in, 0.4 suggests that 1000 researchers = 100 researchers at 2.5x speed which seems kinda reasonable while 1000 researchers = 1 researcher at 16x speed does seem kinda crazy / implausible.
So, I think my current median lambda at likely margins is like 0.55 or something and 0.4 is also pretty plausible at the margin.
Ok, I think what is going on here is maybe that the constant you’re discussing here is different from the constant I was discussing. I was trying to discuss the question of how much worse serial labor is than parallel labor, but I think the lambda you’re talking about takes into account compute bottlenecks and similar?
Not totally sure.