Ah you’re right. I was thinking about the deterministic case.
Your explanation of the jacobian term accounting for features “squeezing together” makes me update towards thinking maybe the quantizing done to turn neural networks from continuous & deterministic to discrete & stochastic, while ad hoc, isn’t as unreasonable as I originally thought it was. This paper is where I got the idea that discretization is bad because it “conflates ‘information theoretic stuff’ with ‘geometric stuff’, like clustering”—but perhaps this is in fact capturing something real.
Ah you’re right. I was thinking about the deterministic case.
Your explanation of the jacobian term accounting for features “squeezing together” makes me update towards thinking maybe the quantizing done to turn neural networks from continuous & deterministic to discrete & stochastic, while ad hoc, isn’t as unreasonable as I originally thought it was. This paper is where I got the idea that discretization is bad because it “conflates ‘information theoretic stuff’ with ‘geometric stuff’, like clustering”—but perhaps this is in fact capturing something real.