>Human priors serve as a temporary bootstrapping mechanism until we develop approaches that can learn effectively from scratch.
I would argue that instead human priors serve as a mechanism to help the search process, as it’s being shown with cold-started reasoning models: they bake-in some reasoning traces that the model can then learn to exploit via RL. While this is not very bitter lesson-esque, the solution space is so large that it’d probably be quite difficult to do so without the cold start phase (although R1-zero kind of hints at this being possible). Maybe we have not yet thrown as much compute at the problem to do this search from scratch effectively.
>Human priors serve as a temporary bootstrapping mechanism until we develop approaches that can learn effectively from scratch.
I would argue that instead human priors serve as a mechanism to help the search process, as it’s being shown with cold-started reasoning models: they bake-in some reasoning traces that the model can then learn to exploit via RL. While this is not very bitter lesson-esque, the solution space is so large that it’d probably be quite difficult to do so without the cold start phase (although R1-zero kind of hints at this being possible). Maybe we have not yet thrown as much compute at the problem to do this search from scratch effectively.