This. Though I don’t think the interpretation algorithm is the source of most of the specification bits here.
To make an analogy with artificial neural networks, the human genome needs to contain a specification of the architecture, the training signal and update algorithm, and some basic circuitry that has to work from the start, like breathing. Everything else can be learned.
I think the point maybe holds up slightly better for non-brain animal parts, but there’s still a difference between storing a blueprint for what proteins cells are supposed to make and when, and storing the complete body plan of the resulting adult organism. The latter seems like a closer match to a Microsoft Word file.
EDIT: Actually, maybe that’d be overcounting what the genome needs to store as well. How individual butterfly bodies grow might be determined by the environment, meaning some of their complexity would actually be specified by the environment, just as in the case of adult butterfly brains. Since this could be highly systematic (the relevant parts of the environment are nigh-identical for all butterflies), those bits would not be captured in our sample of butterfly variation.
Up to the bits of genome description length that vary between individual butterflies, which I’d guess would be small compared to both the bits specifying the butterfly species and the bits specifying details of the procedural generation outcome in individual butterflies?
This. Though I don’t think the interpretation algorithm is the source of most of the specification bits here.
To make an analogy with artificial neural networks, the human genome needs to contain a specification of the architecture, the training signal and update algorithm, and some basic circuitry that has to work from the start, like breathing. Everything else can be learned.
I think the point maybe holds up slightly better for non-brain animal parts, but there’s still a difference between storing a blueprint for what proteins cells are supposed to make and when, and storing the complete body plan of the resulting adult organism. The latter seems like a closer match to a Microsoft Word file.
If you took the adult body plans of lots of butterflies, and separated all the information of an adult butterfly bodyplan into the bits common to all of the butterflies, and the bits specifying the exact way things happened to grow in this butterfly, the former is more or less[1] what would need to fit into the butterfly genome, not the former plus the latter.
EDIT: Actually, maybe that’d be overcounting what the genome needs to store as well. How individual butterfly bodies grow might be determined by the environment, meaning some of their complexity would actually be specified by the environment, just as in the case of adult butterfly brains. Since this could be highly systematic (the relevant parts of the environment are nigh-identical for all butterflies), those bits would not be captured in our sample of butterfly variation.
Up to the bits of genome description length that vary between individual butterflies, which I’d guess would be small compared to both the bits specifying the butterfly species and the bits specifying details of the procedural generation outcome in individual butterflies?