I have originally developed a machine learning notion which I call an LSRDR (L2,d
-spectral radius dimensionality reduction), and LSRDRs (and similar machine learning models) behave mathematically and they have a high level of interpretability which should be good for AI safety. Here, I am giving an example of how LSRDRs behave mathematically and how one can get the most out of interpreting an LSRDR.
Suppose that n is a natural number. Let N denote the quantum channel that takes an n qubit quantum state and selects one of those qubits at random and send that qubit through the completely depolarizing channel (the completely depolarizing channel takes a state as input and returns the completely mixed state as an output).
If A1,…,Ar,B1,…,Br are complex matrices, then define superoperators Φ(A1,…,Ar) and Γ(A1,…,Ar;B1,…,Br) by setting
Φ(A1,…,Ar)(X)=∑rk=1AkXA∗k and Γ(A1,…,Ar;B1,…,Br)=∑rk=1AkXB∗k for all X.
Given tuples of matrices (A1,…,Ar),(B1,…,Br), define the L_2-spectral radius similarity between these tuples of matrices by setting
Suppose now that A1,…,A4n are matrices where N=Φ(A1,…,A4n). Let 1≤d≤n. We say that a tuple of complex d by d matrices (X1,…,X4n) is an LSRDR of A1,…,A4n if the quantity ∥(A1,…,A4n)≃(X1,…,X4n)∥2 is locally maximized.
Suppose now that X1,…,X4n are complex 2×2-matrices and (X1,…,X4n) is an LSRDR of A1,…,A4n. Then my computer experiments indicate that there will be some constant λ where λΓ(A1,…,A4n;X1,…,X4n) is similar to a positive semidefinite operator with eigenvalues {0,…,n+1} and where the eigenvalue j has multiplicity 3⋅C(n−1,k)+C(n−1,k−2) where C(⋅,⋅) denotes the binomial coefficient. I have not had a chance to try to mathematically prove this. Hooray. We have interpreted the LSRDR (X1,…,X4n) of (A1,…,A4n), and I have plenty of other examples of interpreted LSRDRs.
We also have a similar pattern for the spectrum of Φ(A1,…,A4n). My computer experiments indicate that there is some constant λ where λ⋅Φ(A1,…,A4n) has spectrum {0,…,n} where the eigenvalue j has multiplicity 3n−j⋅C(n,j).
I have originally developed a machine learning notion which I call an LSRDR (L2,d
-spectral radius dimensionality reduction), and LSRDRs (and similar machine learning models) behave mathematically and they have a high level of interpretability which should be good for AI safety. Here, I am giving an example of how LSRDRs behave mathematically and how one can get the most out of interpreting an LSRDR.
Suppose that n is a natural number. Let N denote the quantum channel that takes an n qubit quantum state and selects one of those qubits at random and send that qubit through the completely depolarizing channel (the completely depolarizing channel takes a state as input and returns the completely mixed state as an output).
If A1,…,Ar,B1,…,Br are complex matrices, then define superoperators Φ(A1,…,Ar) and Γ(A1,…,Ar;B1,…,Br) by setting
Φ(A1,…,Ar)(X)=∑rk=1AkXA∗k and Γ(A1,…,Ar;B1,…,Br)=∑rk=1AkXB∗k for all X.
Given tuples of matrices (A1,…,Ar),(B1,…,Br), define the L_2-spectral radius similarity between these tuples of matrices by setting
∥∥(A1,…,Ar)≃(B1,…,Br)∥2
=ρ(Γ(A1,…,Ar;B1,…,Br))ρ(Φ(A1,…,Ar))1/2ρ(Φ(B1,…,Br))1/2.
Suppose now that A1,…,A4n are matrices where N=Φ(A1,…,A4n). Let 1≤d≤n. We say that a tuple of complex d by d matrices (X1,…,X4n) is an LSRDR of A1,…,A4n if the quantity ∥(A1,…,A4n)≃(X1,…,X4n)∥2 is locally maximized.
Suppose now that X1,…,X4n are complex 2×2-matrices and (X1,…,X4n) is an LSRDR of A1,…,A4n. Then my computer experiments indicate that there will be some constant λ where λΓ(A1,…,A4n;X1,…,X4n) is similar to a positive semidefinite operator with eigenvalues {0,…,n+1} and where the eigenvalue j has multiplicity 3⋅C(n−1,k)+C(n−1,k−2) where C(⋅,⋅) denotes the binomial coefficient. I have not had a chance to try to mathematically prove this. Hooray. We have interpreted the LSRDR (X1,…,X4n) of (A1,…,A4n), and I have plenty of other examples of interpreted LSRDRs.
We also have a similar pattern for the spectrum of Φ(A1,…,A4n). My computer experiments indicate that there is some constant λ where λ⋅Φ(A1,…,A4n) has spectrum {0,…,n} where the eigenvalue j has multiplicity 3n−j⋅C(n,j).