Sta­bil­iser (of a group ac­tion)

WikiLast edit: 28 Jun 2016 22:08 UTC by Mark Chimes

Let the group act on the set . Then for each element , the stabiliser of under is . That is, it is the collection of elements of which do not move under the action.

The stabiliser of is a subgroup of , for any . (Proof.)

A closely related notion is that of the orbit of , and the very important Orbit-Stabiliser theorem linking the two.

No comments.