They are using their highest probability guess about the output channel, which will be higher probability than the output channel exactly matching some camera on old earth (but may still be very low probability). I still don’t understand the relevance.
I’m trying to find the simplest setting where we have a disagreement. We don’t need to think about cameras on earth quite yet. I understand the relevance isn’t immediate.
They don’t care about “their” Turing machine, indeed they live in an infinite number of Turing machines that (among other things) output bits in different ways.
I think I see the distinction between the frameworks we most naturally think about the situation. I agree that they live in an infinite number of Turing machines, in the sense that their conscious patterns appear in many different Turing machines. All of these Turing machines have weight in some prior. When they change their behavior, they (potentially) change the outputs of any of these Turing machines. Taking these Turing machines as a set, weighted by those prior weights we can consider the probability that the output obeys a predicate P. The answer to this question can be arrived at through an equivalent process. Let the inhabitants imagine that there is a correct answer to the question “which Turing machine do I really live in?” They then reason anthropically about which Turing machines give rise to such conscious experiences as theirs. They then use the same prior over Turing machines that I described above. And then they make the same calculation about the probability that “their” Turing machine outputs something that obeys the predicate P. So on the one hand, we could say that we are asking “what is the probability that the section of the universal prior which gives rise to these inhabitants outputs an output that obeys predicate P?” Or we could equivalently ask “what is the probability that this inhabitant ascribes to ‘its’ Turing machine outputting a string that obeys predicate P?”
There are facts that I find much easier to incorporate when thinking in the latter framework, such as “a work tape inhabitant knows nothing about the behavior of its Turing machine’s output tape, except that it has relative simplicity given the world that it knows.” (If it believes that its conscious existence depends on its Turing machine never having output a bit that differs from a data stream in a base world, it will infer other things about its output tape, but you seem to disagree that it would make that assumption, and I’m fine to go along with that). (If the fact were much simpler—“a work tape inhabitant knows nothing about the behavior of its Turing machine’s output tape” full stop—I would feel fairly comfortable in either framework.)
If it is the case that, for any action that a work tape inhabitant takes, the following is unchanged: [the probability that it (anthropically) ascribes to “its” Turing machine printing an output that obeys predicate P after it takes that action], then, no matter its choice of action, then the probability under the universal prior that the output obeys predicate P is also unchanged.
What if the work tape inhabitant only cares about the output when the the universal prior is being used for important applications? Let Q be the predicate [P and “the sequence begins with a sequence which is indicative of important application of the universal prior”]. The same logic that applies to P applies to Q. (It feels easier to talk about probabilities of predicates (expectations of Boolean functions) rather than expectations of general functions, but if we wanted to do importance weighting instead of using a strict predicate on importance, the logic is the same).
Writing about the fact I described above about what the inhabitants believe about their Turing machine’s output has actually clarified my thinking a bit. Here’s a predicate where I think inhabitants could expect certain actions to make it more likely that their Turing machine output obeys that predicate. “The output contains the string [particular 1000 bit string]”. They believe that their world’s output is simple given their world’s dynamics, so if they write that 1000 bit string somewhere, it is more likely for the predicate to hold. (Simple manipulations of the string are nearly equally more likely to be output).
So there are severe restrictions on the precision with which they can control even low-probability changes to the output, but not total restrictions. So I wasn’t quite right in describing it as a max-entropy situation. But the one piece of information that distinguishes their situation from one of maximum uncertainty about the output is very slight. So I think it’s useful to try to think in terms of how they get from that information to their goal for the output tape.
I was describing the situation where I wanted to maximize the probability where the output of our world obeys the predicate: “this output causes decision-maker simulators to believe that virtue pays”. I think I could very slightly increase that probability by trying to reward virtuous people around me. Consider consequentialists who want to maximize the probability of the predicate “this output causes simulator-decision-makers to run code that recreates us in their world”. They want to make the internals of their world such that there are simple relative descriptions for outputs for which that predicate holds. I guess I think that approach offers extremely limited and imprecise ability to deliberately influence the output, no matter how smart you are.
If an approach has very limited success probability, (i.e. very limited sway over the universal prior), they can focus all their effort on mimicking a few worlds, but then we’ll probably get lucky, and ours won’t be one of the ones they focus on.
From a separate recent comment,
But now that we’ve learned that physics is the game of life, we can make much better guesses about how to build a dataset so that a TM could output it. For example, we can:
Build the dataset at a large number of places.
[etc.]
...
I challenge you to find any plausible description of a rule that outputs the bits observed by a camera, for which I can’t describe a simpler extraction rule that would output some set of bits controlled by the sophisticated civilization.
You’re comparing the probability of one of these many controlled locations driving the output of the machine to the probability that a random camera does on an earth-like Turing machine drives the output. Whereas it seems to me like the right question is to look at the absolute probabilities that one of these controlled locations drives the output. The reason is that what they attempt to output is a mixture over many sequences that a decision-maker-simulator might want to know about. But if the sequence we’re feeding in is from a camera on earth, than their antics only matter to the extent that their mixture puts weight on a random camera on earth. So they have to specify the random camera on an earth-like Turing machine too. They’re paying the same cost, minus any anthropic update. So the costs to compare are roughly [- log prob. successful control of output + bits to specify camera on earth—bits saved from anthropic update] vs. [bits to specify camera on earth—bits saved from directly programmed anthropic update]. This framing seems to imply we can cross off [bits to specify camera on earth] from both sides.
I take your point that we are discussing some output rules which add extra computation states, and so some output rules will add fewer computation states than others.
I’m merging my response to the rest with my comment here.