Deeply fundamentally analog physics, ie, infinite detail, would just be another form of infinity, wouldn’t it? So it’s a variation of the same problem of “what happens to all this when there’s an infinity involved?”
Sorry, I may have been unclear. I didn’t mean to make a claim that physics actually does have this property, but rather I was saying that if physics did have this property, it would just be another instance of an infinity, rather than an entirely novel source for the problem mentioned.
(Also, I’m unclear on the BB, if it takes into account possible future tech that may be able to manipulate the geometry of spacetime to some extent. ie, if we can do GR hacking, would that affect the bound or are the limits of that effectively already precomputed into that?)
Deeply fundamentally analog physics, ie, infinite detail, would just be another form of infinity, wouldn’t it? So it’s a variation of the same problem of “what happens to all this when there’s an infinity involved?”
To the best of our understanding, there’s no such thing as “infinite detail” in physics. Physical information is limited by the Bekenstein bound.
Sorry, I may have been unclear. I didn’t mean to make a claim that physics actually does have this property, but rather I was saying that if physics did have this property, it would just be another instance of an infinity, rather than an entirely novel source for the problem mentioned.
(Also, I’m unclear on the BB, if it takes into account possible future tech that may be able to manipulate the geometry of spacetime to some extent. ie, if we can do GR hacking, would that affect the bound or are the limits of that effectively already precomputed into that?)
Yes, that is my position on it.