I think another interesting datapoint is to look at where our hard-science models are inadequate because we haven’t managed to run the experiments that we’d need to (even when we know the theory of how to run them). The main areas that I’m aware of are high-energy physics looking for things beyond the standard model (the LHC was an enormous undertaking and I think the next step up in particle accelerators requires building one the size of the moon or something like that), gravity waves (similar issues of scale), and quantum gravity (similar issues + how do you build an experiment to actually safely play with black holes?!)
On the other hand, astrophysics manages to do an enormous amount (star composition, expansion rate of the universe, planetary composition) with literally no ability to run experiments and very limited ability to observe. (I think a particularly interesting case was the discovery of dark matter (which we actually still don’t have a model for), which we discovered, iirc, by looking at a bunch of stars in the milky way and determining their velocity as a function of distance from the center by (a) looking at which wavelengths of light were missing to determine their velocity away/towards us (the elements that make up a star have very specific wavelengths that they absorb, so we can tell the chemical composition of a star by looking at the pattern of what wavelengths are missing, and we can get velocity/redshift/blueshift by looking at how far off those wavelengths are from what they are in the lab) and (b) picking out stars of colors that we know come only in very specific brightnesses so that we can use apparent brightness to determine how far away the star is, and (c) use it’s position in the night sky to determine what vector to use so we can position it relative to the center of the galaxy, and finally (d) notice that the velocity as a function of radius function is very very different from what it would be if the only mass causing gravitational pull were the visible star mass, and then inverting the plot to determine the spatial distribution of this newfound “dark matter”. I think it’s interesting and cool that there’s enough validated shared model built up in astrophysics that you can stick a fancy prism in front of a fancy eye and look at the night sky and from what you see infer facts about how the universe is put together. Is this sort of thing happening in biology?)
Thanks for this response, sorry for taking time to acknowledge it.
Thinking about how astrophysics seems to have succeeded despite lack of experimentation seems like a very interesting and probably illuminating question.
I think another interesting datapoint is to look at where our hard-science models are inadequate because we haven’t managed to run the experiments that we’d need to (even when we know the theory of how to run them). The main areas that I’m aware of are high-energy physics looking for things beyond the standard model (the LHC was an enormous undertaking and I think the next step up in particle accelerators requires building one the size of the moon or something like that), gravity waves (similar issues of scale), and quantum gravity (similar issues + how do you build an experiment to actually safely play with black holes?!) On the other hand, astrophysics manages to do an enormous amount (star composition, expansion rate of the universe, planetary composition) with literally no ability to run experiments and very limited ability to observe. (I think a particularly interesting case was the discovery of dark matter (which we actually still don’t have a model for), which we discovered, iirc, by looking at a bunch of stars in the milky way and determining their velocity as a function of distance from the center by (a) looking at which wavelengths of light were missing to determine their velocity away/towards us (the elements that make up a star have very specific wavelengths that they absorb, so we can tell the chemical composition of a star by looking at the pattern of what wavelengths are missing, and we can get velocity/redshift/blueshift by looking at how far off those wavelengths are from what they are in the lab) and (b) picking out stars of colors that we know come only in very specific brightnesses so that we can use apparent brightness to determine how far away the star is, and (c) use it’s position in the night sky to determine what vector to use so we can position it relative to the center of the galaxy, and finally (d) notice that the velocity as a function of radius function is very very different from what it would be if the only mass causing gravitational pull were the visible star mass, and then inverting the plot to determine the spatial distribution of this newfound “dark matter”. I think it’s interesting and cool that there’s enough validated shared model built up in astrophysics that you can stick a fancy prism in front of a fancy eye and look at the night sky and from what you see infer facts about how the universe is put together. Is this sort of thing happening in biology?)
Thanks for this response, sorry for taking time to acknowledge it.
Thinking about how astrophysics seems to have succeeded despite lack of experimentation seems like a very interesting and probably illuminating question.