Absolutely! It’s not ductile enough for wire, and too frangible to bend around a coil even if you managed to make a long thin piece.
But… the early high-Tc superconductors in the 80s were ceramics, too. Even now, with much more friendly materials, the “wire” in the Commonwealth Fusion Systems tokamak prototype is actually a complex tape with multiple layers mostly for structural support.
Here’s a very nice, more technical presnentation at Princeton by a CFS person, showing the tape strucdture, and how the material had to evolve from microcrystalline stuff to much more complex forms to be useful in an engineering sense:
https://suli.pppl.gov/2020/course/20200619_SULI_HTS_Sorbom_Final.pdf
Also note: fusion-relevant REBCO magnets operate at 20T fields and 40kA currents, whereas this new superconductor can’t get above 0.3T fields and 250mA current. Lots of work to do there!
So I hope that gives the right idea: getting from today’s charcoal lump/floaty rock to something with optimized chemistry, easier manufacturability, ductility close enough to wire, and deployable in high fields & high currents took about 30 years the last time it was done.
It’ll be quicker this time, getting from the current charcoal to whatever works, because the incentives are higher. But it almost certainly won’t be simpler.
.
Absolutely! It’s not ductile enough for wire, and too frangible to bend around a coil even if you managed to make a long thin piece.
But… the early high-Tc superconductors in the 80s were ceramics, too. Even now, with much more friendly materials, the “wire” in the Commonwealth Fusion Systems tokamak prototype is actually a complex tape with multiple layers mostly for structural support.
Some details here: https://spectrum.ieee.org/fusion-2662267312
Here’s a very nice, more technical presnentation at Princeton by a CFS person, showing the tape strucdture, and how the material had to evolve from microcrystalline stuff to much more complex forms to be useful in an engineering sense: https://suli.pppl.gov/2020/course/20200619_SULI_HTS_Sorbom_Final.pdf
Also note: fusion-relevant REBCO magnets operate at 20T fields and 40kA currents, whereas this new superconductor can’t get above 0.3T fields and 250mA current. Lots of work to do there!
So I hope that gives the right idea: getting from today’s charcoal lump/floaty rock to something with optimized chemistry, easier manufacturability, ductility close enough to wire, and deployable in high fields & high currents took about 30 years the last time it was done.
It’ll be quicker this time, getting from the current charcoal to whatever works, because the incentives are higher. But it almost certainly won’t be simpler.