Velocity uncertainty of an electron
(A test of latex of sorts)
The uncertainty principle bounds the combined product of std deviations of position and momentum:
σxσp>=ℏ2
The momentum uncertainty is :
σp>=ℏ2σx
As p=mev, the velocity uncertainty (std deviation) is thus:
σv>=ℏ2σxme
For a 1eV electron with σx≈1nm (the electron is confined to a ~1nm cavity on order of de broglie wavelength), then:
σv>=6.5∗10−16eV∗s2∗1nm∗0.5MeV/c2
σv>=6.5∗10−16eV∗s2∗10−9m∗0.5∗106eV/c2
σv>=6.5∗10−16eV∗s10−3m∗eV/c2
σv>=6.5∗10−16eV∗s10−3m∗eV/(3∗108m/s)2
σv>=6.5∗10−16eV∗s10−3m∗eV/(9∗1016m2/s2)
σv>=6.5∗10−16eV∗s1.11∗10−20eV∗s2/m
σv>=5.85∗104m/s
Meanwhile the mean or expectation of the 1eV electron’s kinetic velocity is 5.9∗105m/s ….
So the angular std dev and or linear velocity std dev on is on order ~ 10%?
Velocity uncertainty of an electron
(A test of latex of sorts)
The uncertainty principle bounds the combined product of std deviations of position and momentum:
σxσp>=ℏ2
The momentum uncertainty is :
σp>=ℏ2σx
As p=mev, the velocity uncertainty (std deviation) is thus:
σv>=ℏ2σxme
For a 1eV electron with σx≈1nm (the electron is confined to a ~1nm cavity on order of de broglie wavelength), then:
σv>=6.5∗10−16eV∗s2∗1nm∗0.5MeV/c2
σv>=6.5∗10−16eV∗s2∗10−9m∗0.5∗106eV/c2
σv>=6.5∗10−16eV∗s10−3m∗eV/c2
σv>=6.5∗10−16eV∗s10−3m∗eV/(3∗108m/s)2
σv>=6.5∗10−16eV∗s10−3m∗eV/(9∗1016m2/s2)
σv>=6.5∗10−16eV∗s1.11∗10−20eV∗s2/m
σv>=5.85∗104m/s
Meanwhile the mean or expectation of the 1eV electron’s kinetic velocity is 5.9∗105m/s ….
So the angular std dev and or linear velocity std dev on is on order ~ 10%?