Local truth

New Salt Compounds Challenge the Foundation of Chemistry

The title is overblown (it depends on what you think the foundation is), but get a load of this:

“I think this work is the beginning of a revolution in chemistry,” Oganov says. “We found, at low pressures achievable in the lab, perfectly stable compounds that contradict the classical rules of chemistry. If you apply the rather modest pressure of 200,000 atmospheres—for comparison purposes, the pressure at the center of the Earth is 3.6 million atmospheres—everything we know from chemistry textbooks falls apart.”
Standard chemistry textbooks say that sodium and chlorine have very different electronegativities, and thus must form an ionic compound with a well-defined composition. Sodium’s charge is +1, chlorine’s charge is −1; sodium will give away an electron, chlorine wants to take an electron. According to chemistry texts and common sense, the only possible combination of these atoms in a compound is 1:1 -- rock salt, or NaCl. “We found crazy compounds that violate textbook rules—NaCl3, NaCl7, Na3Cl2, Na2Cl, and Na3Cl,” says Weiwei Zhang, the lead author and visiting scholar at the Oganov lab and Stony Brook’s Center for Materials by Design, directed by Oganov.
“These compounds are thermodynamically stable and, once made, remain indefinitely; nothing will make them fall apart. Classical chemistry forbids their very existence. Classical chemistry also says atoms try to fulfill the octet rule—elements gain or lose electrons to attain an electron configuration of the nearest noble gas, with complete outer electron shells that make them very stable. Well, here that rule is not satisfied.”

And here’s the philosophical bit:

“For a long time, this idea was haunting me—when a chemistry textbook says that a certain compound is impossible, what does it really mean, impossible? Because I can, on the computer, place atoms in certain positions and in certain proportions. Then I can compute the energy. ‘Impossible’ really means that the energy is going to be high. So how high is it going to be? And is there any way to bring that energy down, and make these compounds stable?”
To Oganov, impossible didn’t mean something absolute. “The rules of chemistry are not like mathematical theorems, which cannot be broken,” he says. “The rules of chemistry can be broken, because impossible only means ‘softly’ impossible! You just need to find conditions where these rules no longer hold.”

The obvious example of local truth is relativistic effects being pretty much invisible over the durations and distances that are normal for people, but there’s also that the surface of the earth is near enough to flat for many human purposes.

Any suggestions for other truths which could turn out to be local?